Volume 5, Issue 3, September 2020, Page: 70-74
Analysis of Anharmonic EXAFS Spectra of Crystalline Nickel Using High-order Debye-Waller Factors
Tong Sy Tien, Institute of Research & Development, Duy Tan University, Danang, Vietnam
Le Viet Hoang, Department of Physics, Hanoi University of Science, Hanoi, Vietnam
Nguyen Ngoc Thang, Department 2, University of Fire, Hanoi, Vietnam
Bui Ba Manh, Department 2, University of Fire, Hanoi, Vietnam
Nguyen Huu Hieu, Department 2, University of Fire, Hanoi, Vietnam
Nguyen Thi Ngoc Anh, Department 2, University of Fire, Hanoi, Vietnam
Duong Thanh Cong, Department 10, University of Fire, Hanoi, Vietnam
Nguyen Hong Nhung, Department 10, University of Fire, Hanoi, Vietnam
Nguyen Thi Thanh Nhan, Department 1, University of Fire, Hanoi, Vietnam
Received: Jun. 25, 2020;       Accepted: Jul. 14, 2020;       Published: Aug. 5, 2020
DOI: 10.11648/j.aas.20200503.13      View  78      Downloads  28
The extended X-ray absorption fine structure (EXAFS) has been developed into a powerful technique and is widely applied to determine many structural parameters and dynamic properties of materials. The EXAFS technique is now the technique of choice in many materials science investigations, and the EXAFS data analysis is being performed in many laboratories spread around the world. In this work, the anharmonic EXAFS spectra of crystalline nickel (Ni) has been analyzed based on the quantum anharmonic correlated Einstein model. The anharmonic EXAFS oscillation presented in terms of the Debye-Waller factors using the cumulant expansion approach up to the fourth-order. This calculation model has been developed from the high-order anharmonic effective potential that described the contribution of their nearest-neighbor atoms to the pair interaction potential. The analytical expressions of the anharmonic EXAFS cumulants are not only explicit forms but also satisfy all of their fundamental properties in temperature dependence. The analysis of the anharmonic EXAFS spectra was performed by evaluating the contributions of the cumulants to the amplitude reduction and the phase shift of the anharmonic EXAFS oscillation. The numerical results for Ni were in good agreement with those obtained using the other theoretical methods and experiment at various temperatures, which are useful for analyzing the experimental EXAFS data of the metal crystals.
EXAFS Analysis, Einstein Model, Quantum Statistical Theory, Crystalline Nickel
To cite this article
Tong Sy Tien, Le Viet Hoang, Nguyen Ngoc Thang, Bui Ba Manh, Nguyen Huu Hieu, Nguyen Thi Ngoc Anh, Duong Thanh Cong, Nguyen Hong Nhung, Nguyen Thi Thanh Nhan, Analysis of Anharmonic EXAFS Spectra of Crystalline Nickel Using High-order Debye-Waller Factors, Advances in Applied Sciences. Vol. 5, No. 3, 2020, pp. 70-74. doi: 10.11648/j.aas.20200503.13
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
F. W. Lytle, D. E. Sayers, and E. A. Stern, Phys. Rev. B 11, 4825 (1975).
G. Beni and P. M. Platzman, Phys. Rev. B 14, 1514 (1976).
P. Eisenberger and G. S. Brown, Solid State Commun. 29, 481 (1979).
R. B. Greegor and F. W. Lytle, Phys. Rev. B 20, 4902 (1979).
E. A. Stern, BA Bunker, and S. M. Heald, Phys. Rev. B 21, 5521 (1980).
P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys. 53, 769 (1981).
G. Bunker, Nucl. Instrum. Methods 207, 437 (1983).
L. Tröger, T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer, and K. Baberschke, Phys. Rev. B 49, 888 (1994).
G. Dalba, P. Fornasini, and M. Grazioli, Phys. Rev. B 76, 11034 (1995).
J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).
J. M. Tranquada and R. Ingalls, Phys. Rev. B 28, 3520 (1983).
E. D. Crozier, J. J. Rehr, and R. Ingalls, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by D. C. Koningsberger & R. Prins, John Wiley & Sons, New York, 1988, Chap. 9.
G. Dalba and P. Fornasini, J. Synchrotron Radiat. 4, 243 (1997).
G. Dalba, P. Fornasini, R. Grisenti, D. Pasqualini, D. Diop, and F. Monti, Phys. Rev. B 58, 4793 (1998).
N. V. Hung and J. J. Rehr, Phys. Rev. B 56, 43 (1997).
T. Miyanaga and T. Fujikawa, J. Phys. Soc. Jpn. 63, 3683 (1994).
T. Yokoyama, Phys. Rev. B 57, 3423 (1998).
T. Yokoyama, J. Synchrotron Radiat. 6, 323 (1999).
A. V. Poiarkova and J. J. Rehr, Phys. Rev. B 59, 948 (1999).
S. a Beccara, G. Dalba, P. Fornasini, R. Grisenti, F. Pederiva, A. Sanson, D. Diop, and F. Rocca, Phys. Rev. B 68, 140301 (2003).
S. a Beccara and P. Fornasini, Phys. Rev. B 77, 172304 (2008).
F. D. Vila, J. J. Rehr, H. H. Rossner, and H. J. Krappe, Phys. Rev. B 76, 014301 (2007).
F. D. Vila, V. E. Lindahl, and J. J. Rehr, Phys. Rev. B 85, 024303 (2012).
A. Sanson, J. Synchrotron Radiat. 16, 864 (2009).
T. S. Tien, J. Phys. D: Appl. Phys. 53 (2020) 315303.
N. V. Hung, L. H. Hung, T. S. Tien, and R. R. Frahm, Int. J. Mod. Phys. B 22, 5155 (2008).
N. V. Hung, C. S. Thang, N. B. Duc, DQ. Vuong, and T. S. Tien, Eur. Phys. J. B 90, 256 (2017).
N. V. Hung, N. B. Duc, DQ. Vuong, N. C. Toan, and T. S. Tien, Vacuum 169, 108872 (2019).
N. V. Hung, T. S. Tien, N. B. Duc, and DQ. Vuong, Mod. Phys. Lett. B 28, 1450174 (2014).
T. S. Tien, N. V. Hung, N. T. Tuan, N. V. Nam, N. Q. An, N. T. M Thuy, V. T. K. Lien, and N. V. Nghia, J. Phys. Chem. Solids 134, 307 (2019).
L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).
T. Fujikawa and T. Miyanaga, J. Phys. Soc. Jpn. 62, 4108 (1993).
T. Yokoyama, K. Kobayashi, T. Ohta, and A. Ugawa, Phys. Rev. B 53, 6111 (1996).
N. V. Hung, N. B. Trung, and N. B. Duc, J. Mater. Sci. Appl. 1, 51 (2015).
I. V. Pirog, T. I. Nedoseikina, I. A. Zarubin, and A. T. Shuvaev, J. Phys.: Condens. Matter 14, 1825 (2002).
Browse journals by subject